IdP Clustering

High Availability and Load Balancing

SWITCHaai Team aai@switch.ch

You want to prevent service outages

Possible problems:

- HW failures
 - Server component failure
 - · power failure.
 - Network failure
- Software failures
- Service overload
- Downtimes due to maintenance (major upgrades)

•

What you usually do

- Take one box
 - Harden it through redundant components (power, network, disk, memory, CPU's, backplane (?))
- Or take another box
 - Organize failover (cold standby)
- Or take a couple of boxes
 - · Organize load balancing

• ...

3

Challenges with the IdP

- The setup of the IdP and the whole environment is more complex than with a single-server IdP.
- Special configuration of the IdP is required.
- Load balancing requires special hardware or software.
- IdPs in SWITCHaai store some data in a database.
 Therefore, clustered IdPs need some kind of clustered database or some replication mechanism.

Stateful or not?

For stateless systems, building a cluster "is easy". But: The IdP is stateful, in general.

- Conversational state: Short-term session during login process
 - Managed outside of the IdP software
 - · Requires sticky sessions on load balancer
 - · At present, there is no solution provided to replicate this data
- Non-conversational state: Data the IdP stores
 - Managed by the IdP software
 - Examples: Persistent ID, User consent data, IdP User Session
 - The IdPv3 provides flexible mechanisms to store such data, e.g. in the client or in a common database, so that the data is available to all nodes.

5

Storage Recommendations

Storage Entity	Recommended Storage	Scope	
Persistent ID	Common Database	Cluster	
User consent	Common Database	ase Cluster	
IdP User Session	Client	Per Client	
Transient ID	Common Database	Cluster	
SAML artifact	Common Database	Cluster	
Conversation Session	Memory	Per Node	
Message replay cache	Memory	Per Node	

Remarks:

- "Common Database" means some central/clustered database or a database replicated between nodes.
- SAML artifact: Irrelevant if SAML 2.0 artifacts are not used/required at all
- Alternatives for Message replay cache:
 Common Database or memcached (depending on security requirements)

Secret key management for cookie encryption

 The IdP User Session is stored in an encrypted cookie in the browser. The key to encrypt/decrypt this cookie should regularly be rotated. In a clustered setup, all nodes need to share the same key. It's recommended that one node generates a new key and copies it to the other nodes.

Setup:

- Decide for a node that is responsible for generating the secret keys and copying them to the other nodes.
- Install an appropriate cronjob.
- Our guide "Shibboleth Identity Provider Clustering" describes the details and shows an example cronjob script: https://www.switch.ch/aai/guides/idp/clustering/

7

Examples

Who	Network	Processing	Persistent storage
Uni Bern (IdPv3)	NGINX (active-active) HTTP Loadbalancer	2 IdPs	Use of central MSSQL-cluster
Uni Genève (IdPv2)	F5 BIG-IP Loadbalancer (sticky)		MySQL DB Cluster
Uni Lausanne (IdPv2)	HW load balancer (active-passive)	2 IdPs (active- passive)	external MySQL-DB (also HA: Heartbeat + DRBD)
Uni Zürich (IdPv2)		3 IdPs	external MySQL database
HES-SO Fr (IdPv2)		2 IdPs active- active	
Uni Marburg (IdPv2)	NGINX Loadbalancer	2 IdPs, memcached,	1 external PostgresDB server
SWITCH (IdPv2)	Anycast address	2 IdPs active- passive	Local MySQL-DB, replicated by cron

Considerations for planning an IdP cluster

You need to think about

- Which type of setup do you need?
- What kind of database do you need?
- Which additional hardware or software is required?
- Which further considerations are relevant for your organisation?

There are many mechanisms and options available to setup a suitable environment. The setup to choose depends on the requirements and the possibilities of your organisation.

11

References

Documentation from SWITCH:

Shibboleth IdP Clustering
 https://www.switch.ch/aai/guides/idp/clustering/

Documentation from the Shibboleth Consortium:

- Clustering https://wiki.shibboleth.net/confluence/display/IDP30/Clustering
- Storage https://wiki.shibboleth.net/confluence/display/IDP30/Storage
- Secret Key Management https://wiki.shibboleth.net/confluence/display/IDP30/SecretKeyManagement

12