nticatio tion 185

PD Dr. Rolf Oppliger eSECURITY Technologies Rolf Oppliger (www.esecurity.ch) Thunstrasse 57b, CH-3074 Muri, Switzerland E-Mail: rolf.oppliger@esecurity.ch Tel.+41 (0)79 654 84 37

Agenda

- 2. Cryptographic Techniques
- 3. Kerberos
- 4. Kerberos-based AAIs
- 5. PKI
- 6. PKI-based AAIs
- 7. Comparison
- 8. Conclusions and Outlook

References (Cryptography)

- N.I. Koblitz. A Course in Number Theory and Cryptography (2nd Edition). Springer-Verlag, Berlin, 1994, ISBN 0387942939
- D.R. Stinson. Cryptography: Theory and Praxis. CRC Press, Boca Raton, FL, 1995, ISBN 0849385210
- B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C (2nd Edition). John Wiley & Sons, New York, NY, 1996, ISBN 0471117099
- A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of Applied Cryptography. CRC Press, Boca Raton, FL, 1997, ISBN 0849385237 (PDF files available at http://cacr.math.uwaterloo.ca/hac/)

References (Kerberos and Kerberos-based AAIs)

R. Oppliger. Authentication Systems for

© 2000 eSECURITY Technologies Rolf Oppliger

- Secure Net-works, Artech House, Norwood, MA, 1996, ISBN 0890065101
- B. Tung. Kerberos: A Network Authentication System. Addison-Wesley, Reading, MA, 1999, ISBN 0201379244
- P. Ashley and M. Vandenwauver. Practical Intranet Security: Overview of the State of the Art and Available Technologies. Kluwer Academic Press, 1999, ISBN 0792383540

References (PKI and PKI-based AAIs 1/2)

- S. Garfinkel and E.H. Spafford. Web Security & Commerce. O'Reilly & Associates, Sebastopol, CA, 1996, ISBN 1565922697
- W. Stallings. Cryptography and Network Security: Principles and Practice (2nd Edition). Prentice Hall, Upper Saddle River, NJ,1997, ISBN 0138690170
- W. Ford and M. Baum. Secure Electronic Commerce: Building the Infrastructure for Digital Signatures and Encryption. Prentice Hall, Upper Saddle River, NJ,1997, ISBN 0134763424
 - J. Feghhi, J. Feghhi and P. Williams, **Digital Certificates: Applied Internet Security**, Addison-Wesely, Reading, MA, 1999, ISBN 0201309807

References (PKI and PKI-based AAIs 2/2)

- C. Adams and S. Lloyd. Understanding the Public-Key Infrastructure. New Riders Publishing, 1999, ISBN 157870166X
- T. Austin, D. Huaman and T.W. Austin. Public Key Infrastructure Essentials, John Wiley & Sons, New York, NY, 2000, ISBN 0471353809
- S.A. Brands. Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy. MIT Press, 2000, ISBN 0262024918
- R. Housley and T. Polk. Planning for PKI: Best Practices Guide for Deploying Public Key Infrastructure. John Wiley & Sons, New York, NY, 2001, ISBN 0471397024

Introduction

According to the "Internet Security Glossary" (RFC 2828)

- Authentication refers to the process of verifying an identity claimed for a system entity
- Authorization refers the process of granting a right or permission to a system entity to access a system resource
- An authentication and authorization infrastructure (AAI) is an infrastructure that provides support for authentication and authorization
- AAIs are getting increasingly important in todays networked and distributed environments
 - Development roots:
 - Kerberos authentication system
 - Public key infrastructures (PKIs)

Cryptographic Techniques 1/4

Secret key (symmetric) cryptography

Algorithms: DES, 3DES, AES (Rijndael), IDEA, Blowfish, RC4, ...

Cryptographic Techniques 2/4

Public key (asymmetric) cryptography

Algorithms: RSA, Diffie-Hellman, ElGamal, DSS, ECC, ...

Cryptographic Techniques 3/4

Cryptographic Techniques 4/4

3. Kerberos 1/6

- The **Kerberos authentication system** was developed at MIT as part of the Athena project
- Since version 4, the MIT reference implementation is publicly and freely available
- In addition, there are many commercial Kerberos implementations
- Kerberos version 5 is specified in RFC 1510 and submitted to the Internet standards track
- The IETF Security Area hosts a Kerberos WG (KRB-WG)

Kerberos 2/6

Design requirements:

- Single sign-on (i.e., the password is used only once for the initial login sequence)
- Passwords are not transmitted in the clear (i.e., the system is resistant against password sniffing attacks)
- No use of public key cryptography
- In the Kerberos architecture, every realm (security domain) must operate a physically secure environment that hosts a key distribution center (KDC)
 - The KDC maintains a database with a secret key K_p for every principal P

Kerberos 3/6

Kerberos 4/6

1) (C>	AS	•	U, TGS, L ₁ , N ₁
2) Z	AS>	С	•	U, $T_{c,tgs}$, {TGS, K, T_{start} , T_{expire} , N_1 } K _u
3) (C>	TGS	•	S, L ₂ , N ₂ , T _{c,tgs} , A _{c,tgs}
4)]	[GS>	С	•	U, T _{c,s} , {S, K', T' _{start} , T' _{expire} , N ₂ }K
5) (C>	S	•	T _{c,s} , A _{c,s}
6) 5	5>	С	•	{T'}K'

$$T_{c,tgs} = \{U, C, TGS, K, T_{start}, T_{expire}\}K_{tgs} \qquad A_{c,tgs} = \{C, T\}K$$
$$T_{c,s} = \{U, C, S, K', T'_{start}, T'_{expire}\}K_{s} \qquad A_{c,s} = \{C, T'\}K'$$

Kerberos 5/6

Major drawbacks and shortcomings:

- The KDC must be completely trusted ("big brother"-property)
- Verifiable password guessing attacks
- Any proposal to overcome these drawbacks and shortcomings must use public key cryptography
- Proposal to overcome the "big brother"-property:
 - Yaksha (Ganesan et al.)
 - Public key extensions for Kerberos (IETF KRB-WG)
- Proposals to protect against verifiable password guessing attacks:
 - Encrypted Key Exchange (EKE)
 - Similar proposals by Gong et al.

Kerberos 6/6

A major obstacle for the large-scale deployment of the Kerberos system is inter-realm authentication

Kerberos inter-realm authentication requires mutual trust between the two participating KDCs (does not scale)

4. Kerberos-based AAIs 1/3

- The original Kerberos authentication system does not address authorization (i.e., authorization is left to the server)
- Consequently, some AAIs have been developed
 - that make use of the Kerberos system for authentication and
 - that extend the basic Kerberos model with regard to authorization (resulting in Kerberos-based AAIs)
- Exemplary Kerberos-based AAIs:
 - A Secure European System for Applications in a Multi-vendor Environment (SESAME) developed by Bull, ICL, and SSE
 - Distributed Computing Environment (**DCE**) promoted by the Open Group (formerly known as OSF)
 - Microsoft Windows 2000

Kerberos-based AAIs 2/3

SESAME is based on

- a Kerberos V5 authentication service
- an ECMA-based authorization and access control service
- In short, SESAME uses **privilege attribute certificates** (PACs) to grant privileges to entities
- A PAC
 - is a digitally signed statement about the privileges of an entity
 - is issued by a privilege attribute server (PAS)
 - is conceptually similar to an attribute certificate (as discussed later)
- The Open Group's DCE and Microsoft's Windows 2000 use similar concepts

Kerberos-based AAIs 3/3

Further information about the SESAME project and products is available at

https://www.cosic.esat.kuleuven.ac.be/sesame/

5. PKI 1/9

- **Public key certificates** are required to protect the authenticity and integrity of public keys (and to protect against "manin-the-middle"-attacks)
- **ITU-T X.509** version 3 is the certificate format of choice for most applications
- Nevertheless, ITU-T X.509 version 3 still requires a profiling process for a specific application environment (e.g., IETF PKIX WG for the Internet)
- The IETF SPKI WG is developing and specifying an alternative certificate format and trust model for the Internet application environment

Version					
Certificate serial number					
Signature algorithm identifie	r				
lssuer Validity period					
Subject public key information					
[Issuer unique information]				
[Subject unique information]				
[Extensions]					
CA's digital signature					

Alternative formats for public key certificates:

PKI 3/9

- The certification process can be iterated (arbitrarily often), meaning that a CA's certificate can be certified by another CA (resulting in a **certificate chain**)
- A certificate chain must be verified until a root CA is reached
- Note, however, that a certificate can only be trusted iff
 - every certificate in the chain is successfully verified
 - every CA in the certificate chain can be trusted
- In practice, certificate chains are short and seldom verified for trustworthiness
- Also, the concept of **cross-certification** is of low practical value and seldom used between certification service providers

PKI 4/9

- According to RFC 2828 "Internet Security Glossary" a **public key infrastructure (PKI)** is "a system of CAs [...] that perform some set of
 - certificate management,
 - archive management,
 - key management, and
 - token management functions
- for a community of users in an application of asymmetric cryptography."
 - Major applications:
 - SSL/TLS (and WTLS)
 - S/MIME
 - IPSec and virtual private networking

PKI 5/9

PKI 6/9

- Approaches to provide status information:
 - Certificate Revocation Lists (CRLs)
 - Delta-CRLs
 - Online Certificate Status Protocol (OCSP)
 - Certificate Revocation System (CRS)
 - Certificate Revocation Trees (CRTs)
 - **.**.
- Unfortunately, the possibility to **revoke certificates** makes it necessary to operate online components (e.g., OCSP servers)
- Furthermore, the possibility to **suspend certificates** makes things even more complicate

PKI 7/9

- Legislation for digital signatures and corresponding PKIs is a difficult and very challenging task
- In Switzerland, a "Verordnung über Dienste der elektronischen Zertifizierung" (ZertDV) was put in place on May 1, 2000
- The ZertDV will be replaced by a "Bundesgesetzes über die elektronische Signatur" (BGES)
- In either case, the criteria against which certification service providers (i.e., CAs) would be evaluated and certified are not clear and still under construction
- This is equally true for the European Electronic Signature Standardization Initiative (EESSI)

PKI 8/9

PKI 9/9

- Today, many companies and organizations are in the process of deciding whether they want to build and operate a PKI and provide corresponding CA services of their own, or whether they want to outsource the corresponding services to commercial service providers (e.g. VeriSign, Swisskey, ...)
- There is a whole range of possibilities

6. PKI-based AAIs 1/5

© 2000 eSECURITY Technologies Rolf Oppliger

Slide 30

PKI-based AAIs 2/5

- E-commerce and e-business applications generally need a possibility to authorize entities (in addition to authentication)
- Consequently, some type of **Privilege Management Infra**structure (PMI) must be put in place
- PMI is the next-generation buzzword in the PKI industry
- A PMI is conceptually similar to a PKI-based AAI
- There are several possibilities to implement PMIs and PKIbased AAIs:
 - Encode authorization information in public key certificates (e.g., using ITU-T X.509 v3 extension fields)
 - Use of attribute certificates
 - Manage authorization information in a database management system (DBMS)

PKI-based AAIs 3/5

- ITU-T **X.509 v3 extension fields** should only be used to carry authorization information that is stable and constant over time
- Otherwise, the use of **attribute certificates (ACs)** is advantageous and should be the preferred option
 - An AC
 - is conceptually similar to a PAC
 - is issued and digitally signed by an attribute authority (AA)
- Unfortunately, ACs are not supported by many applications and application protocols (e.g., SSL/TLS)
- A **DBMS** can be used to link authorization information to public key certificates, and to implement a PMI accordingly

PKI-based AAIs 4/5

- For example, a **distributed certificate management system (DCMS)** was proposed and prototyped by the Swiss Federal Strategy Unit for Information Technology (FSUIT)
- The DCMS uses a DBMS to match public key certificates to group memberships (and to "simulate" the functionality of ACs accordingly)
- The group membership information can be used to implement role-based access controls
- The authentication part of the DCMS is similar in spirit and provides comparable services to VeriSign OnSite and the Swisskey Customer Branded CA service

PKI-based AAIs 5/5

7. Comparison

Kerberos-based AAIs PKI-based AAIs

Security	+	+
Non-repudiation		++
Trust requirements	-	+
Complexity	-	Ο
Scalability		+
Interoperability		-
Application modifications		-
Vendor support	0	+
Future perspectives	-	+

8. Conclusions and Outlook 1/2

- Both Kerberos- and PKI-based AAIs are well suited to meet the requirements of contemporary and future applications
- At first sight, the technologies look fundamentally different
- However, the differences are mainly caused by authentication
- With regard to authorization, the technologies are similar in spirit and use comparable constructs (i.e., (P)ACs)
- There is a possibility that the technologies converge in the long term
- In the short- and medium-term, however, it is possible and very likely that we will see different (and not interoperable) AAIs

Conclusions and Outlook 2/2

Query and Answers

